Fuchsia #iF/ASEERFENLR (2022)

TEEIEARR BB & T AR SF R,
A FRERMEET Fuchsia RITERXXXHEARR, TIEER. FaBTHER,

BRFEMAEMIRIZHE 3 NS (part) ik 1 MBS TTAENE, FUSTRFIERD. ALk, EAILL
o BE—IBREOHISIFIE, EREFILE. BERMNEBNATHITEIZ.

TIEENEERBALHZ, FAEKRINEIES. BtERSITEK, RFRRENEEHITHF
IR,

AR
1 BAEEREAR, BMOEFENER.

2. FRAIGEAEEEBNES EREIRAS, TRIEREREWR. BIRME.

3 ﬁ MREIF T RENEIFMNMEIFE, TUEAERKNTASHERN FEHTEIZIEN
4. BEETHIRI ST AEIENR, FERBIA.

BERE SRR X ERE, ERBAERSHNARIE, HiESBFHptRIEE
whyto@fuchsia-china.com, EBFFEIRIRE “BRiFMiAPDFiE3L” .

* WIR

BIREEERZRPIES I -

IE B AT RN 5 IREAE XN

BIREEERBRPIESVRETHRFE *

BB R TR ZNE 52 & X N AZ R BR

NOTE: You do NOT need to necessarily read the reference
information if you can already simply translate the passages.



PART 1

You will translate some passages about the C++ programming
language taken from one document. Here is the abstract of the
document for your reference.

From development/languages/c-cpp/compile_time_object_collections.md

This document covers active discussion about building compile-time collections of objects
in C++. The following use cases are examples of where compile-time collections are
useful:

e StringRef - A type that supports building a compile-time collection of string labels
with associated unique numeric ids for tracing purposes.

e LockClass - A type that supports building a compile-time collection of state objects
for runtime lock validation purposes.

The following sections discuss common and unique requirements of each use case, the
current challenges with the implementations, and proposed solutions.

1. Please translate the following passage into Simplified Chinese.

StringRef is a type that implements the concept of string references. A string reference is a
mapping from a numeric id to a character string. Using the mapping makes more
economical use of the trace buffer: an (id, string) pair is emitted once in a tracing session
and then subsequent events may refer to the string by id instead of including the full
character sequence inline.

2. Please translate the following passage into Simplified Chinese.

LockClass is a type that captures information about a lock that is common to all instances
of the lock (e.g. its containing type if it is a struct/class member, the type of the underlying
lock primitive, flags describing its behavior). The LockClass type is used by the runtime
lock validator to determine which ordering rules apply to each lock and to locate the per-
lock-class tracking structure used to record ordering observations.




PART II

You will translate some passages about some USB driver concepts
and processes in Fuchsia. Here is a piece of overall information for
your reference.

From development/drivers/driver_guides/usb/concepts/overview.md

Zircon provides a full featured USB subsystem enabling the development of USB host and
peripheral devices. Low, full, high, and super-speed devices are supported as well as various
standard autonegotiation mechanisms.

3. Please translate the following passage into Simplified Chinese.

From development/drivers/driver_guides/usb/concepts/overview.md

The first step in a USB request's lifecycle is allocation. USB requests contain data from all of
the drivers in the request stack in a single allocation. Each driver that is upstream of a USB
device driver should provide a GetRequestSize method -- which returns the size it needs to
contain its local request context. When a USB device driver allocates a request, it should
invoke this method to determine the size of the parent's request context.

4. Please translate the following passage into Simplified Chinese.

From development/drivers/driver_guides/usb/concepts/overview.md

In general, USB device drivers encode transfer requests into a usb_request_t structure.
These request structs generally have an asynchronous callback associated with them to be
executed upon transfer completion. For the most part, the USB stack functions by the higher
order device drivers publishing requests to a queue of outstanding requests. As these
requests are serviced, their respective callbacks are invoked notifying the upper layers that
the request is complete.




PART III

You will translate some passages about some kernel concepts in
Fuchsia taken from one document. Here is a piece of overall
information for your reference.

From concepts/kernel/README. md

Zircon is the core platform that powers Fuchsia. Zircon is composed of a kernel (source in
/zircon/kernel) as well as a small set of userspace services, drivers, and libraries (source
in /zircon/system/) necessary for the system to boot, talk to hardware, load userspace
processes and run them, etc. Fuchsia builds a much larger OS on top of this foundation.

The Zircon Kernel provides syscalls to manage processes, threads, virtual memory, inter-
process communication, waiting on object state changes, and locking (via futexes).

5. Please translate the following passage into Simplified Chinese.

From concepts/kernel/handles.md

Handles are kernel constructs that allow user-mode programs to reference a kernel object.
A handle can be thought of as a session or connection to a particular kernel object.

It is often the case that multiple processes concurrently access the same object via different
handles. However, a single handle can only be either bound to a single process or be bound
to the kernel.

6. Please translate the following passage into Simplified Chinese.

From concepts/kernel/concepts.md

Threads represent threads of execution (CPU registers, stack, etc) within an address space
that is owned by the Process in which they exist. Processes are owned by Jobs, which define
various resource limitations. Jobs are owned by parent Jobs, all the way up to the Root Job,
which was created by the kernel at boot and passed to "userboot", the first userspace
Process to begin execution.




	信息页
	第 1 部分
	第 2 部分
	第 3 部分

	Q4: 
	Q3: 
	Q6: 
	Q5: 
	Name: 
	Q1: 
	Q2: 
	E-mail: 


